Wednesday, 11 December 2024

EXPONENTS AND POWER

 

Worksheet 1

Exponents and Powers  (Class 7 NCERT)

Section A: Fill in the Blanks

  1. Section A: Fill in the Blanks

    1. 25×23=2___2^5 \times 2^3 = 2^{\_\_\_}
    2. (53)2=5___(5^3)^2 = 5^{\_\_\_}
    3. Any number raised to the power 0 is equal to ___.
    4. The value of (3)2(-3)^2 is _____.
    5. Simplify: 105102=10___\frac{10^5}{10^2} = 10^{\_\_\_}

Section B: Multiple Choice Questions (MCQs)

  1. What is the value of 323^{-2}?

    • a) 19\frac{1}{9}
    • b) 9-9
    • c) 99
    • d) 19-\frac{1}{9}
  2. 23×32=_____2^3 \times 3^2 = \_\_\_\_\_

    • a) 3636
    • b) 1818
    • c) 7272
    • d) 108108
  3. What is the scientific notation of 5600056000?

    • a) 5.6×1045.6 \times 10^4
    • b) 56×10356 \times 10^3
    • c) 5.6×1035.6 \times 10^3
    • d) 560×102560 \times 10^2
  4. Simplify: 2623\frac{2^6}{2^3}

    • a) 88
    • b) 44
    • c) 232^3
    • d) 66
  5. Section C: Short Answer Questions

    1. Write the value of 70+(4)07^0 + (-4)^0

    2. Simplify: 53×22÷235^3 \times 2^2 \div 2^3

    3. Write 0.000450.00045 in scientific notation.

    4. Evaluate: (2)3+(2)2(-2)^3 + (-2)^2

    5. Express 1.25×1031.25 \times 10^3 in standard form.

Section D: Long Answer Questions

  1. Simplify and express the answer in exponential form:
    (34×32)÷35(3^4 \times 3^2) \div 3^5

  2. If a=23a = 2^3 and b=32b = 3^2 find a2×b3a^2 \times b^3.

  3. Write the value of (25)2(2^5)^2 and compare it with 2102^{10}

  4. Express 181\frac{1}{81} as a power of 3.

  5. The distance between the Earth and the Moon is approximately 384000384000km. Express this distance in scientific notation.

Answer Key

Section A:

  1. 8
  2. 6
  3. 1
  4. 9
  5. 3

Section B:

  1. a) 19​
  2. c) 7272
  3. b)5.6 x 10^4
  4. a) 8

Section C:

  1. 12501250

Section D:

  1. 66a^2 \times b^3 = (2^3)^2 \times (3^2)^3 = 2^6 \times 3^6 = (2 \times 3)^6 = 6^6
  2. Both are equal.
  3. 34\frac{1}{81} = 3^{-4}
  4. 3.84×1053.84 \times 10^5 km


Worksheet 2

Exponents and Powers

Part A: Fill in the Blanks

  1. 25=______2^5 = 
  2. 33=______3^3 = 
  3. The value of 505^0 is ______.
  4. (102)×(103)=_____
  5. 6462=______\frac{6^4}{6^2} = \_\_\_\_\_\_

Part B: True or False

  1. 23+23=262^3 + 2^3 = 2^6(True/False)
  2. (32)3=36(3^2)^3 = 3^6 (True/False)
  3. Any non-zero number raised to the power 0 is 0. (True/False)
  4. 45×43=484^5 \times 4^3 = 4^8 (True/False)
  5. 23÷22=212^3 \div 2^2 = 2^1(True/False)

Part C: Simplify

  1. (23)×(32)
  2. (53)÷(52)(5^3) \div (5^2)
  3. (70)+(24)
  4. (103)÷(102)×(104)(10^3) \div (10^2) \times (10^4)
  5. (24)2(2^4)^2

Part D: Solve

  1. Write 8181 as a power of 33.
  2. Express 10001000 as 10n10^n.
  3. Find the value of (3)3(-3)^3.
  4. Compare 252^5 and 525^2.
  5. Find xx if 2x=162^x = 16.

Part E: Word Problems

  1. A bacteria doubles every hour. If its initial count is 11, express its population after:

    • 1 hour
    • 3 hours
    • 6 hours
  2. The side of a square is 232^3 cm. Find its area in exponential form and calculate its value.

  3. A machine produces 535^3 parts in an hour. How many parts will it produce in 22 hours?

  4. Write the standard form of 5×1035 \times 10^3 and 3.6×1043.6 \times 10^4.


Part F: Match the Following

ExpressionValue
242^4
16
(32)2(3^2)^2
81
53÷525^3 \div 5^2
5
10010^0
1
23+232^3 + 2^3
16

Answer

Part A: Fill in the Blanks

  1.  1.

Part B: True or False

  1.  False
  2. True
  3.  False
  4. True
  5. True

Part C: Simplify


Part D: Solve

  1. 3481 = 3^4
  2. 1031000 = 10^3
  3.  25>522^5 > 5^2
  4.  x=4x = 4

Part E: Word Problems

  1. Bacteria doubling every hour:

  2. 64cm2\text{side}^2 = (2^3)^2 = 2^{3 \times 2} = 2^6 = 64 \, \text{cm}^2

  3. .

  4. Standard form:


Part F: Match the Following

ExpressionValue
242^416
(32)2(3^2)^2
81
53÷525^3 \div 5^2
5
10010^0
1
23+232^3 + 2^316